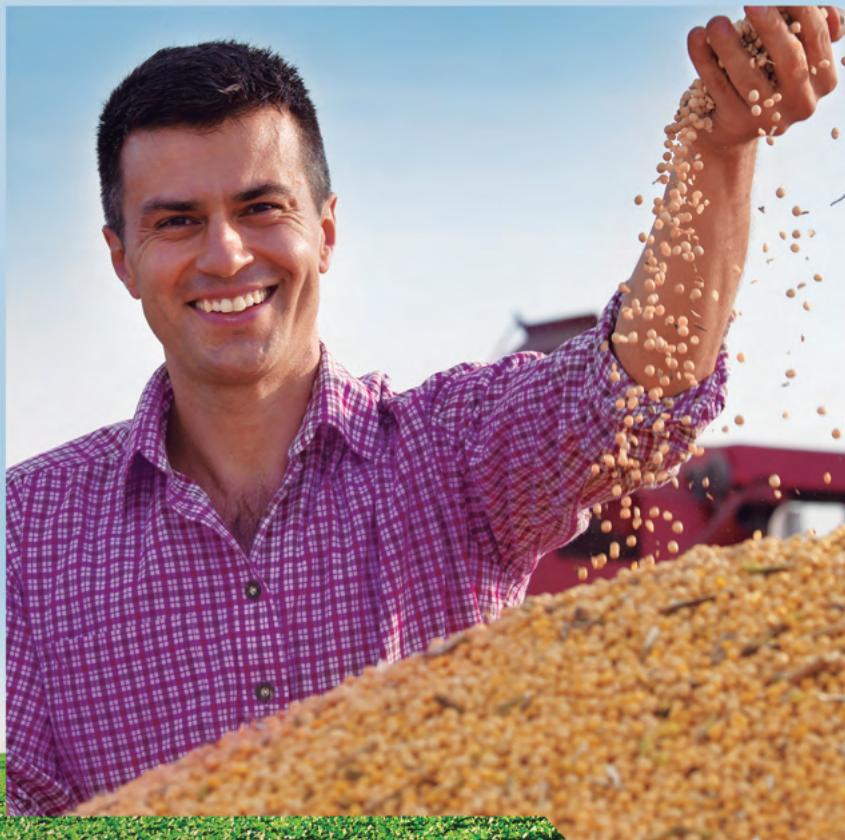


Haviza™ active

Looking across your fields, you see the result of every decision.

Making informed, innovative choices at every stage is how you cultivate long-term success. When planning your fungicide application program, making the best selections for your farm is increasingly complex, as you look to maximize value and ensure performance of every choice.

The landscape of plant diseases is ever-changing. Fungal pathogens continue to adapt to existing technologies, compromising product efficacy and calling into question how to maintain the best program lineup.


A New Advantage in Soybean Disease Control

After years of research driven by farmer observations, Corteva Agriscience has developed a powerful new active ingredient. **Introducing Haviza™ active: the first picolinamide fungicide created to tackle the toughest soybean diseases.**

Haviza is the first and only Group 21 mode-of-action fungicide available for soybeans. This innovative technology binds to a newly discovered receptor site within the pathogen's power plant, effectively stopping disease – even in strains resistant to older fungicides.

By targeting a new receptor site, Haviza offers a powerful solution to combat emerging and established fungicide resistance across a spectrum of diseases. With Haviza, your fungicide program stays ahead of resistance, helping you build a stronger, more resilient disease management strategy.

Let's explore how Haviza can bring confidence to your fields and support your best crop yet.

HavizaTM active

Achieve The Highest Confidence

UNIQUE

New
Mode of Action
Group
for Disease Resistance
Management

POWERFUL

The Only
Picolinamide
Chemistry
in Soybean

QUICK

Complete
Coverage
via Systemic
Movement

Delivering must-have benefits to your disease management program:

The **only Group 21 fungicide** active on ascomycete and basidiomycete pathogens in soybean

Key replacement for previous technology

Major new rotation partner with a **low use rate**

No cross-resistance with other modes of action

High efficacy against difficult-to-control diseases

Powerful preventive activity

Superior rainfastness for confident applications

Highly compatible tank mix partner

Flexible use in custom programs

CHAPTERS

1	Origin Story	<hr/> 05
2	Performance	<hr/> 08
3	The Science	<hr/> 15
4	People & Environment	<hr/> 21

New technologies are essential.

TOGETHER WE CAN EXTEND THEIR FUTURE.

Applying best management practices helps protect the utility of all crop protection tools into the future.

Here are recommendations for using Haviza™ active as part of a disease management program.

Haviza™ active must be **integrated into a robust spray program with other mode of action groups** to provide the most effective control of the target diseases

In order to manage resistance risk, **Haviza should be used in preventive applications**

Use Haviza as **part of an Integrated Pest and Disease Management (IPDM) strategy** incorporating other methods of control

Always follow **product-specific label recommendations** for resistance management

A grain market in need

ESTABLISHED CHEMISTRIES LOSING EFFICACY

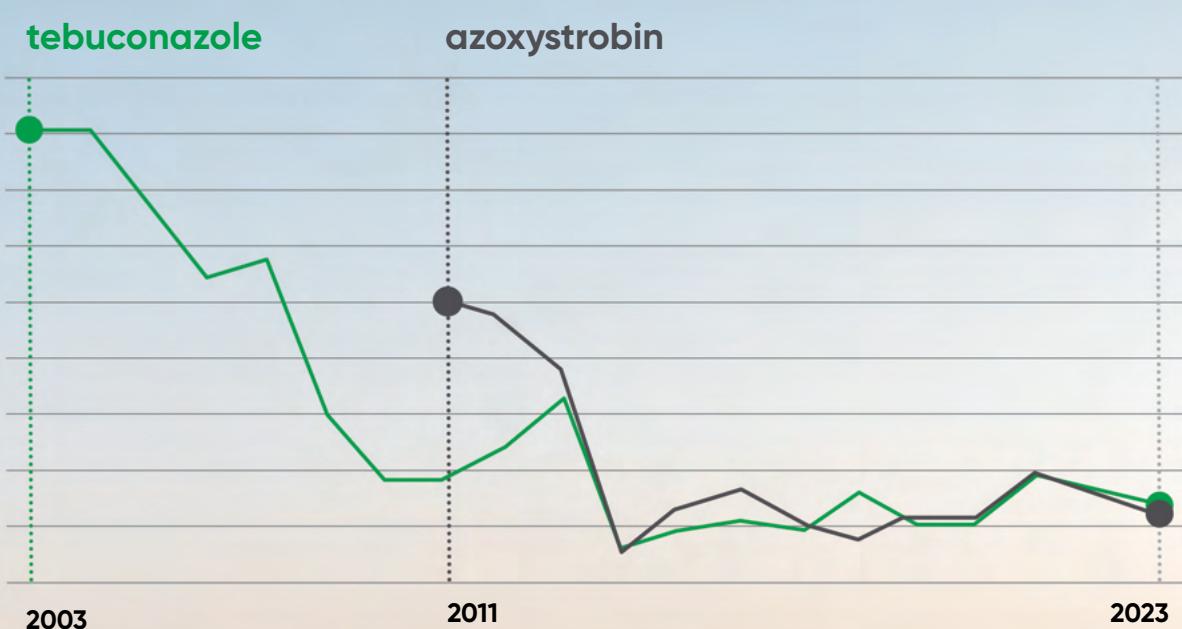


Figure 1.

Declining trend in fungicide efficacy (% control) observed over a 20-year period in Brazil (Embrapa, 2024).

Soybean production is a dynamic business. It requires planning, focus, and making the best choices for factors within your control. Crop disease is among the most powerful causes of damage and yield loss in our business. **Fungal diseases in particular present a major challenge, and current solutions for managing soybean foliar diseases are becoming strained.**

Two main issues complicate disease control. First, fungal pathogen adaptation is reducing efficacy of established chemistries (Figure 1). Second, developing new and potent active fungicides for farm use is a complex and often lengthy process. Novel solutions – and more sustainable ones – are needed to improve each season's outcome.

Big News:

NOVEL TARGET SITE DISCOVERED FOR SOYBEAN DISEASES

The story of Haviza™ active begins with farm collaboration. Corteva Agriscience partnered with farm managers to ask what they needed to manage the spectrum of priority diseases in their soybean fields – throughout each season and over the coming years. At the top of their list? A foundational new active ingredient to manage driver diseases.

We sought a solution that could replace existing fungicides active on rust and equally contribute to managing late-cycle diseases in products that support integrated farming practices.

Working from our proprietary class of picolinamide fungicides, Corteva researchers discovered a novel target site for soybean pathogens. Haviza emerged from this historic first as a breakthrough in fungal disease product development.

With a novel target site and unmatched performance, Haviza delivers complete confidence to farm managers when making their fungicide program selections.

The discovery and development of chemistry inspired by **soil-bacteria**

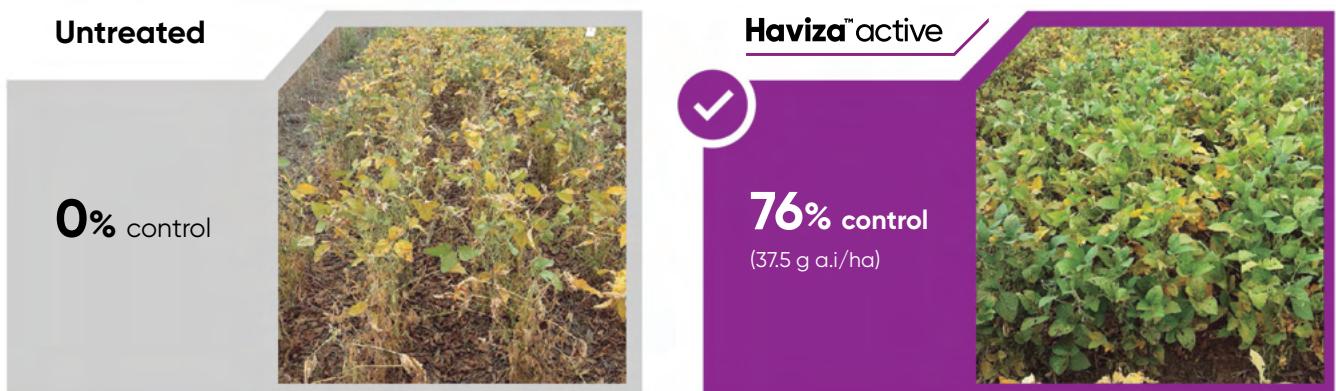
Haviza™ active

The first Group 21 active ingredient for managing ascomycete and basidiomycete pathogens in soybean

A 25+ year journey dedicated to discovering **the value of naturally inspired fungicides** for farms the world over

Discovery of the picolinamides – a family of chemistry first established by **Corteva Agriscience**

**Unmatched
performance
in your fungicide
program.**

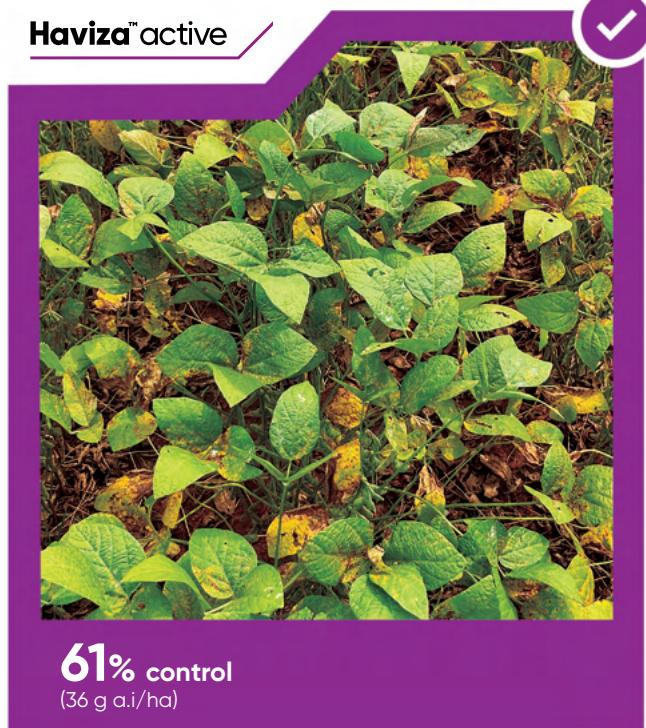

Get back to confident disease management.

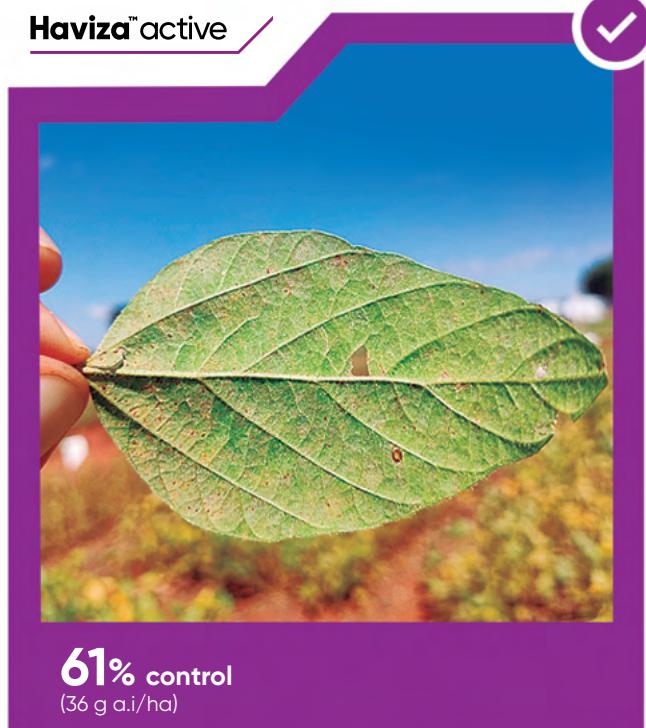
Soybean rust (*Phakopsora pachyrhizi*)

One of the most important diseases in soybean production. The selection of varieties adapted to each region, use of disease monitoring systems, and an integrated fungicide program is essential to avoid significant damage and disease spread.

Haviza™ active is the first active ingredient optimized to deliver exceptional rust control. In field trial after field trial, high levels of efficacy are seen at rates lower than prior technologies.

Figure 2.


Soybean rust evaluation under field conditions comparing untreated plots with plots treated with Haviza™ active (Corteva R&D studies, Brazil, 2023).


Figure 3.

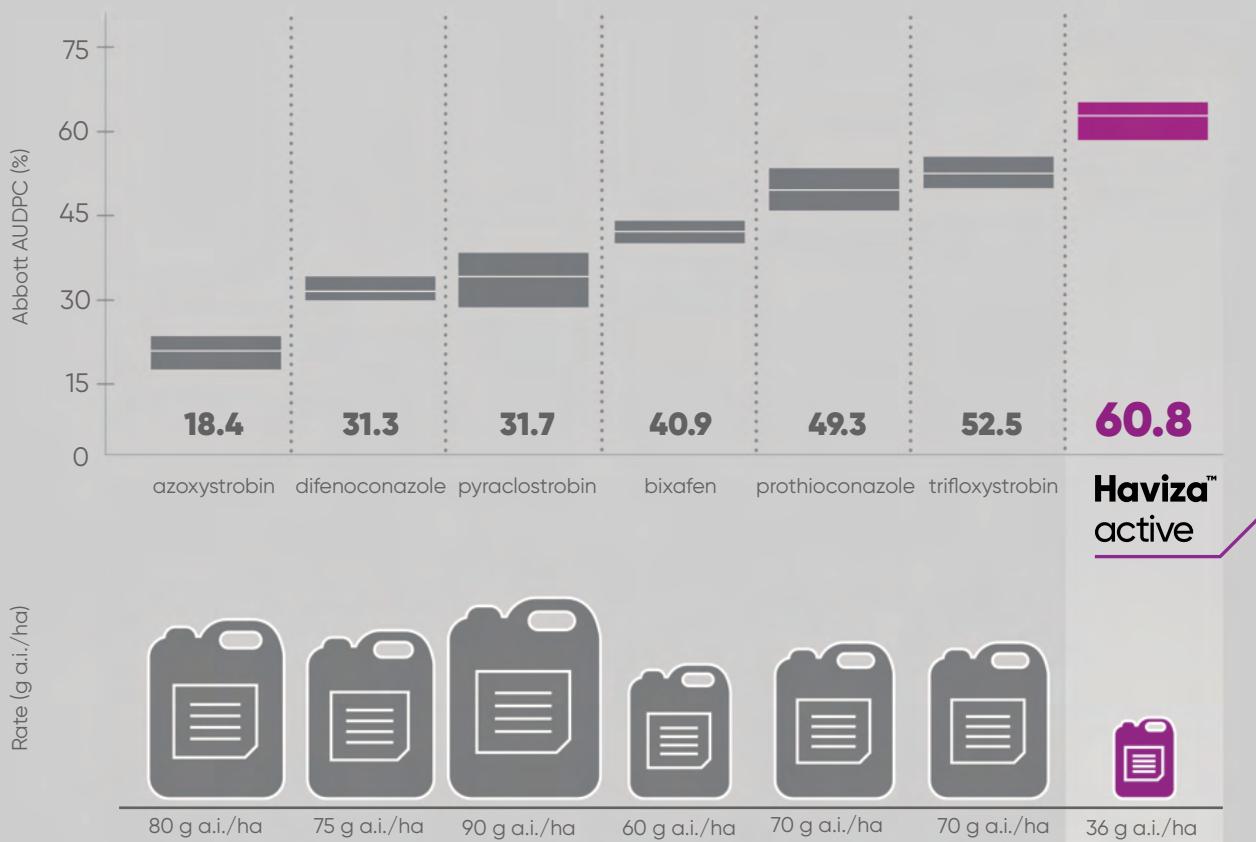
Soybean rust evaluation comparing untreated plots with plots treated with Haviza™ active. Images taken 14 days after the last application (Corteva R&D studies, Brazil, 2023).

Consistently high performance on soybean rust...

Figure 4.
Soybean rust evaluation comparing untreated plots with plots treated with Haviza™ active. Images taken 14 days after the last application (Corteva R&D studies, Brazil, 2023).

10 **Haviza™ active**

Figure 5.
Pustules and uredospore of soybean rust (leaf underside) on an untreated leaf, compared with a leaf treated with Haviza™ active. Images taken 14 days after the last application (Corteva R&D, Brazil, 2023).


...in trial after trial in the field.

Haviza™ active in head-to-head comparisons.

Gram for gram, Haviza™ active delivers better disease control than common active ingredients. In full-season studies, Haviza alone achieved the highest efficacy, even when tested at a rate far lower than the next most effective treatments.

THE HIGHEST EFFICACY...

Figure 6.

Efficacy of single-active ingredients on soybean rust severity over multiple crop stages in field studies. Upper graph: percent (%) control of treatments following Abbott analysis conducted on the area under the disease progress curve (AUDPC). Box size reflects variance in treatment response. Lower graph: jug size is scaled to match the rate of each treatment (Corteva R&D, Brazil, 2023).

...AT THE **LOWEST RATE** TESTED.

Anthracnose (*Colletotrichum dematium* var. *truncata*)

This disease can affect any green part on the plant during the crop cycle. Necrosis can cause pods to abort or leaves to fall. When it reaches the stem, anthracnose can interfere with grain filling. Reducing disease establishment and progression are key.

Figure 7.

Effective control of anthracnose using a mixture of Haviza™ active and Onmira™ active compared with an untreated plant (Corteva R&D, Brazil, 2024).

2. PERFORMANCE

Powdery Mildew (*Microsphaera diffusa*)

Mildew blocks sunlight, interfering with plant photosynthesis. Mildew can spread rapidly overnight in the presence of dew and even on drier days. Timely application of the right solutions keep plants healthy.

Untreated

0% control

85% control

Haviza (36 g a.i./ha) + Onmira (54 g a.i./ha)

Figure 8.

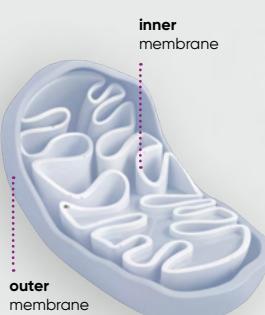
Effective control of powdery mildew using a mixture of Haviza™ active and Onmira™ active (Corteva R&D, Brazil, 2024).

A Novel Mode of Action Group Works on Another Level

Haviza™ active

15

3. THE SCIENCE


A Brand New Mode Of Action Group

Haviza™ is the first and only FRAC Group 21 picolinamide active ingredient. This means Haviza can do what other fungicides can't: **counter fungicide resistance**.

Inside the disease pathogen, Haviza has a surprise. It binds to a previously undiscovered receptor – distinct from other fungicides – to shut down disease before it can take hold.

Haviza targets the **quinone inside site** on the inner mitochondrial membrane.

The mitochondrion:
the power plant
inside each cell
of the pathogen

Source: www.frac.info

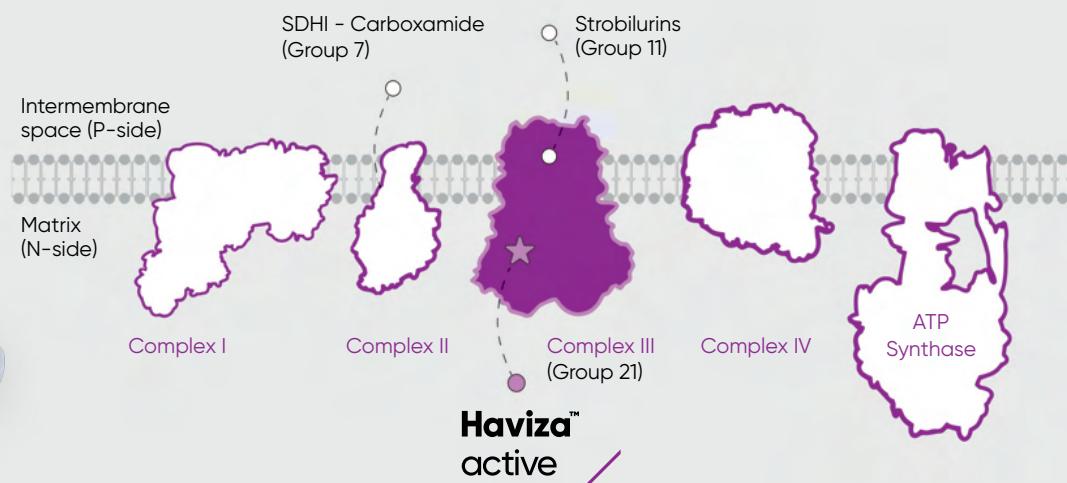


Figure 9.

Haviza is a FRAC Group 21 Quinone Inside Inhibitor (Qil) that binds to Complex III on the inside of the inner mitochondrial membrane, which is distinguished from target sites for SDHI / carboxamides (Complex II) and strobilurin (Quinone Outside Inhibitor, Qol) actives.

picolinamides

- THE FIRST AND ONLY -
PICOLINAMIDE FUNGICIDE
FOR USE IN SOYBEAN

Haviza™ active

Immediately following application, Haviza™ active moves safely inside the crop to protect yield full-time.

Xylem Systemic Activity

Transport via the xylem protects new and expanding growth that occurs between applications.

Translaminar Movement

Maximizes total leaf protection from top to the bottom, including non-sprayed tissues.

Systemic Action Reaches Through Plants to ensure disease has nowhere to take hold

Untreated

Haviza™ active

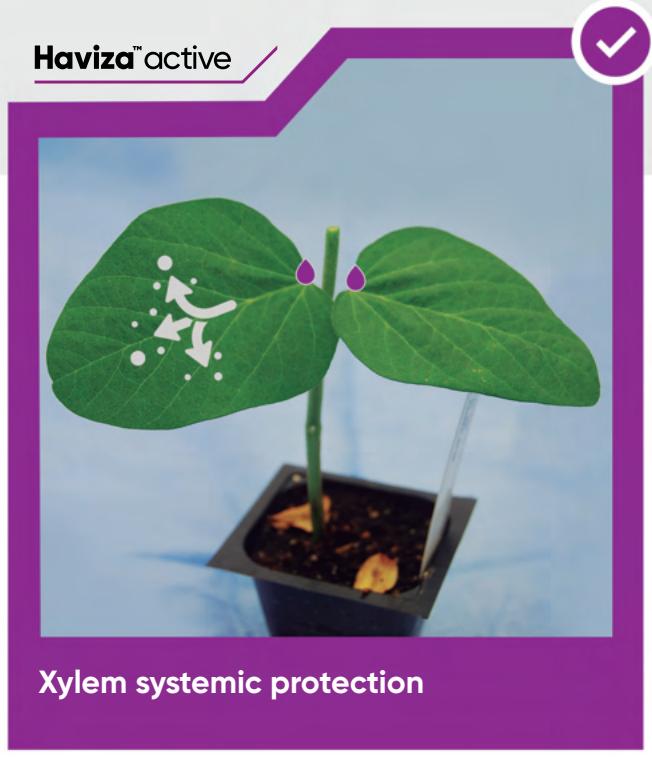
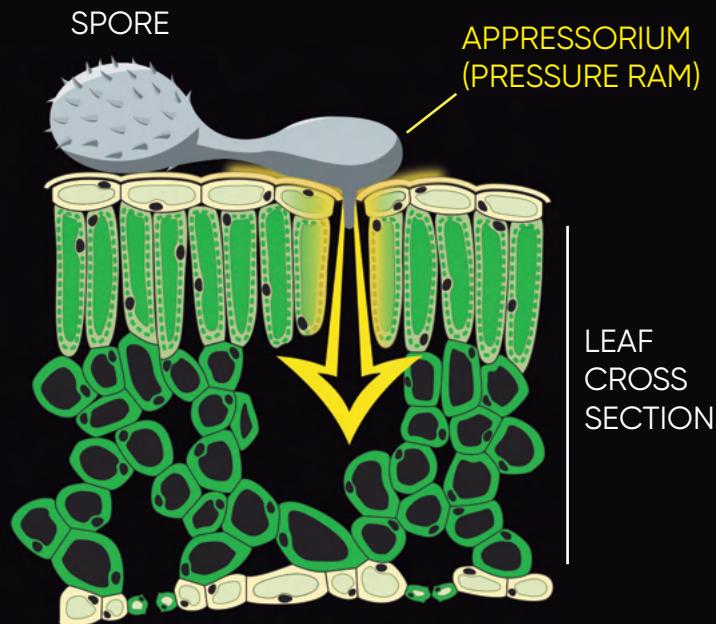
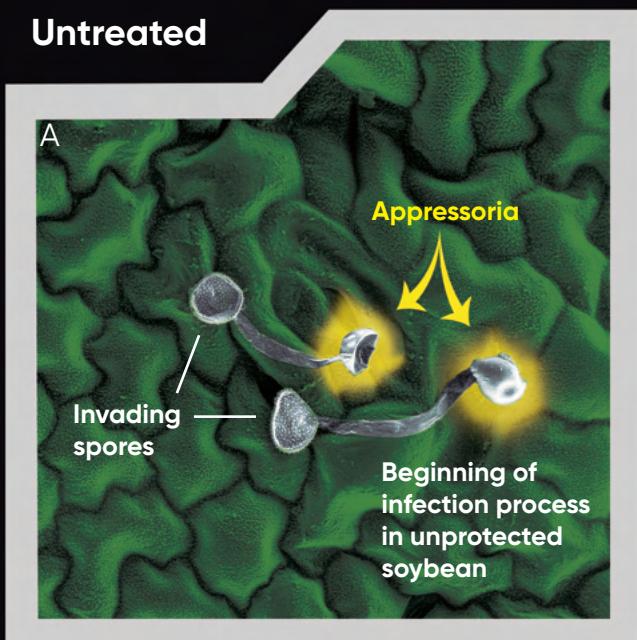



Figure 10.

Haviza™ active demonstrates excellent xylem systemicity and acropetal movement. Following placement of small droplets on the leaf axils, systemic protection is shown in a one-day preventive test using soybean rust spores. (Corteva R&D, USA, 2018).


A close-up look of Haviza in action

For an invading pathogen to rob the soybean leaf of nutrients, the pathogen creates an appressorium – **a pressure ram** – that breaks into the leaf, creating a door for infection. The untreated images on the left show the appressorium breaking into the soybean leaf.

The leaf on the right was treated with a preventive application of Haviza™ active.

Of the spores that were able to germinate, none were able to form appressoria and so failed to infect.

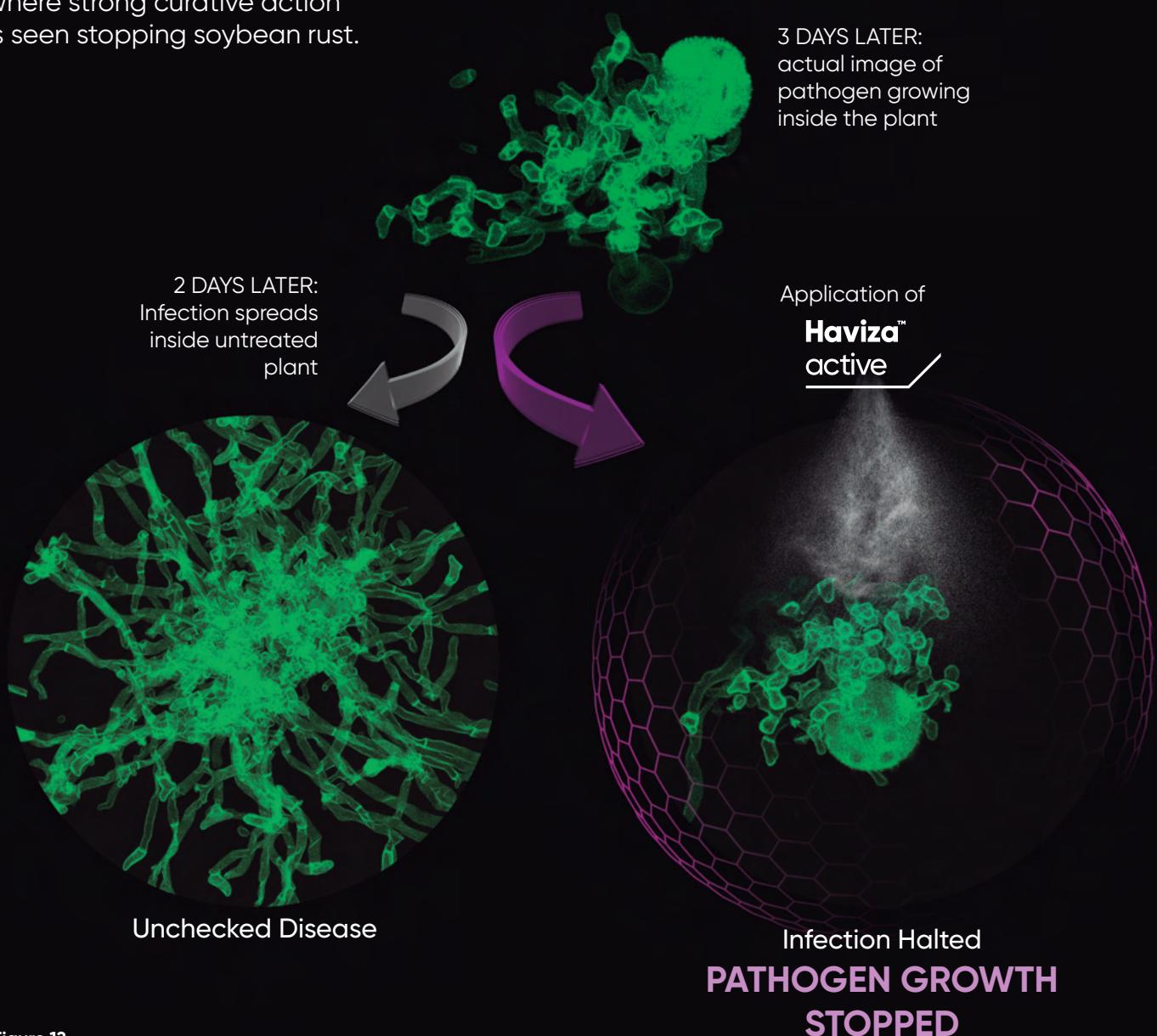
Infection has begun

Infection prevented

Figure 11.

Germinating spores with appressoria infecting untreated soybean leaf (A); Rust spores fail to infect leaf as appressoria do not develop on a leaf treated with Haviza™ active (B) (Corteva R&D, USA, 2019).

The Power of Haviza to Stop Infections


Preventive application is always recommended, but in reality, some spores germinate prior to application. In these cases, Haviza™ active has a unique ability to shut down pathogen growth and stop disease progression.

Here's a look inside the plant where strong curative action is seen stopping soybean rust.

Rust spores applied to unprotected plant

3 DAYS LATER:
actual image of pathogen growing inside the plant

Unchecked Disease

Infection Halted

PATHOGEN GROWTH STOPPED

Figure 12.

Left-side: five days after inoculation, the pathogen inside an untreated leaf exhibited massive mycelial expansion. **Right-side:** mycelial expansion is terminated and growth stopped inside a leaf treated with Haviza three days after inoculation. Imaging performed at five days (Corteva R&D, USA, 2019).

Haviza™ active Formulations

Formulations are being developed to maximize utility for farm operations. Haviza™ active will be offered in formulations that support tank mixing, application flexibility, crop coverage, penetration and uptake, resistance management and enhanced performance across a wide spectrum of pathogens.

**Looking to the future
means developing
sustainable solutions**

4. PEOPLE AND ENVIRONMENT

TABLE 1.

Haviza™ active physical and chemical properties.

Trade Name	Haviza™ active
Common Name	metarylpicoxamid
Biological Action	fungicide
Code Names Tested	XDE-747, XR-747
Chemical Family	picolinamides
Chemical Name (IUPAC)	(2S,3S)-3-(2-methylphenyl)butan-2-yl N-[(4-methoxy-3-(propanoyloxy)pyridin-2-yl)carbonyl]-L-alaninate
Chemical Name (CAS)	[(2S,3S)-3-(2-methylphenyl)butan-2-yl] (2S)-2-[(4-methoxy-3-propionyloxy)pyridin-2-yl]carbonyl]amino] propionate
CAS Number	2376210-14-7
Mode of Action Group	FRAC Group 21
Target Site	C4: Respiration inhibitor at MET III (cyt. bc1 complex) – Quinone inside Inhibitor (Qii)
Plant Translocation	xylem systemic + local plant mobility (translaminar and acropetal)
Chemical Structure	
Empirical Formula	C ₂₄ H ₃₀ N ₂ O ₆
Molecular Weight	442.5 g/mol
Melting Point	89.5 – 92.5°C
Vapor Pressure	4 x 10 ⁻⁷ Pa @ 20°C

TABLE 2.
Haviza™ active safety profile summary.

Group	Toxicity Classification
Mammals	● Low
Birds	● Very low
Honey bees	● Very low
Other non-target arthropods	● Very low
Soil organisms (earthworms, collembola and soil mites)	● Very low
Non-target higher plants	● Very Low
Algae and aquatic plants*	● Moderate
Fish and aquatic invertebrates*	● High

*Use according to the approved label does not result in risk to aquatic organisms. See label for local guidance and requirements.

4. PEOPLE AND ENVIRONMENT

Research on Haviza indicates that the active ingredient exhibits very low acute toxicity to terrestrial species, including birds, honeybees, and earthworms. Haviza exhibits high acute toxicity to fish and aquatic invertebrates, and moderate toxicity to algae and aquatic plants depending upon species*. In toxicological studies, Haviza exhibited low acute toxicity and absence of chronic toxicity concerns to mammals. No harm is expected when applied according to label guidelines.

***Note:**

Use according to the approved label does not result in risk to aquatic organisms. See label for local guidance and requirements.

Haviza™ active safety profile summary

Haviza™ active has favorable ecotoxicological and environmental fate profiles, ensuring minimal impact to non-target organisms and the environment. Application rates of Haviza are relatively low compared to other active ingredients. Labelled best practices provide guidance on application and associated requirements. The safety profile for Haviza fully supports broad use and enables application programs based on integrated pest and disease management principles.

Key points in the favorable mammalian toxicological profile for Haviza™ active:

Low acute toxicity

Not carcinogenic

Not genotoxic

Not immunotoxic

Not neurotoxic

No indication of reproductive or developmental toxicity

No evidence of endocrine toxicity

No bioaccumulation

4. PEOPLE AND ENVIRONMENT

TABLE 3.
Haviza™ active environmental fate profile.

Hydrolysis	Lab half-life @ pH 7: 41.5 days
Photolysis in water	Lab half-life @ pH 7: 0.74 days
Soil	Aerobic lab half-life: 0.52 days
Water/Sediment System	Aerobic lab half-life (total system): 1.1 days
Dissociation Constant (pKa)	Does not dissociate at environmentally significant pH values
Water solubility	3.1 mg/L @ pH 7
Partition Coefficient ($\log_{10}P_{ow}$)	3.9 @ pH 7

No lateral movement in soil was observed for Haviza™ active in field experiments, and simulation studies demonstrate a very low potential for groundwater contamination.

WORKER SAFETY

Handler and applicator safety is paramount to all that we do. Refer to country-specific labels for information about application and handling, including personal protective equipment (PPE), product mixers, loaders and applicators, and re-entry intervals (REI).

REGULATORY INFORMATION

Regulatory registrations are pursued to serve the agricultural needs of environmentally responsible plant disease management. Consult your local Corteva Agriscience representative for current information on Haviza™ active registration status for your country or territory, and for additional regulatory information on Maximum Residue Levels (MRLs), Import Tolerances, and Product Stewardship Plans.

RECOMMENDED REFERENCES

1. Godoy, C. V.; Utiamada, C. M.; Meyer, M. C.; Campos, H. D.; Del Ponte, E. M.; de Carvalho, A. G.; Tomen, A.; Mochko, A. C. R.; Dias, A. R.; Paes, B. L.; Hawerroth, C.; Forcelini, C. A.; Schipanski, C. A.; Chagas, D. F.; Siquer, F. V.; Galdino, J. V.; Ascari, J. P.; dos Santos, J.; Bonani, J. C.; Roy, J. M. T.; Grigolli, J. F. J.; Belufi, L. M. R.; da Silva, L. H. C. P.; Garbiate, M. V.; Araújo Júnior, I. P.; Sato, L. N.; Goussain Júnior, M. M.; Stefanelo, M. S.; Müller, M. A.; Debortoli, M. P.; Senger, M.; Tormen, N. R.; Roehrig, R.; de Souza, T. P.; Gomes, L. M. M. R. Eficiência de fungicidas para o controle da ferrugem-asiática da soja, *Phakopsora pachyrhizi*, na safra 2023/2024: resultados sumarizados dos ensaios cooperativos. Circular Técnica 206, Embrapa Soja, Londrina, PR, Julho 2024. ISSN 2176-2864.
2. Yao, C.; Meyer, K.G.; Avila-Adame, C.; Meyer, S.; Slanec, T.; Bowling, A.J.; Pence, H.E.; Cool, A.; Koga, L. *subm.* Synthesis and biological characterization of metarylpicoxamid: a fungicide for control of soybean diseases. Pest Manag. Sci.
3. Meyer, K.G.; Yao, C. (2025). Chapter 20.2.2. Picolinamides and other Qi Inhibitors. Modern Crop Protection Compounds 4th Edition, Wiley.
4. Meyer, K.G.; Yao, C.; Loy, B.A.; Sam, B.; Vermeulen, N.; Avila-Adame, C.; Wang, N.; Young, D.H.; Babij, N.R.; Petkus, J. (2022). Structure-activity investigations toward the discovery of metarylpicoxamid. Abstracts of Papers, 263th ACS National Meeting & Exposition; August 21-25, 2022; American Chemical Society, Chicago, IL, 2022.
5. Yao, C.; Meyer, K.G.; Gallup, C.; Bowling, A.J.; Hufnagl, A.; Myung, K.; Lutz, J.; Slanec, T.; Pence, H.E.; Delgado, J.; Wang, N.X. (2021). Florylpicoxamid, a new picolinamide fungicide with broad spectrum activity. Pest Mang Sci. 77(10): 4483-4496. <https://doi.org/10.1002/ps.6483>.

Disclaimer

The Haviza™ active Technical Bulletin is provided for reference purposes only and is not a substitute for or an addition to the product label or MSDS. Always read and follow label directions. The information and any recommendations in this bulletin ("Information") are presented in good faith; however, Corteva Agriscience makes no warranty as to the completeness or accuracy of the Information. The Information is supplied upon the condition that persons receiving it will make their own determinations as to its suitability for their purposes prior to use and consult with their advisors to ensure compliance with all federal, state, and local regulations. In no event will Corteva Agriscience be responsible for damages of any nature whatsoever resulting from the use of or reliance on this Information. This bulletin is intended to provide technical information and is not an offer for sale; Haviza™ active registrations are pending.

NO REPRESENTATION OR WARRANTIES, EITHER EXPRESSED OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO THE INFORMATION OR THE PRODUCTS TO WHICH THE INFORMATION REFERS.

Notice to the State of New York: The conclusions which are contained within this Technical Bulletin relating to the toxicological and environmental properties and effects of Haviza™ active are based on research and studies conducted by Corteva Agriscience. All such conclusions and findings are considered to be the opinions of Corteva Agriscience.

® ™ Trademarks of Corteva Agriscience™ and its affiliated companies. © Corteva 2025

